edit

Dr Irena Koprinska
Faculty Member

Contact Details

E-mail: irena.koprinska@sydney.edu.au
Phone: +61 2 9351 3764

School of Information Technologies
Room 450, Building J12
University of Sydney
NSW, 2006, Australia

Web-site: http://sydney.edu.au/it/~irena

Photo of Dr Irena Koprinska

Research Interests

Pattern recognition, Machine Learning, Neural Networks, Data Mining - algorithms and applications; Multimedia, Video Processing, Digital Libraries, Information Retrieval.

About

Recent Publications

V. Gramoli, M. A. Charleston, B. Jeffries, I. Koprinska, M. McGrane, A. Radu, A. Viglas, and K. Yacef. Mining autograding data in computer science education. In Proceedings of the Australasian Computer Science Week Multiconference, Canberra, Australia, February 2-5, 2016, page 1, 2016. [View Details]

M. Rana and I. Koprinska. Forecasting electricity load with advanced wavelet neural networks. Neurocomputing, 182:118-132, 2016. [View Details]

J. McBroom, B. Jeffries, I. Koprinska, and K. Yacef. Mining behaviors of students in autograding submission system logs. In Proceedings of International Conference in Educational Data Mining, 2016. [View Details]

I. Koprinska, J. Stretton, and K. Yacef. Predicting Student Performance from Multiple Data Sources. In Artificial Intelligence in Education - 17th International Conference, AIED 2015, Madrid, Spain, June 22-26, 2015. Proceedings, pages 678-681, 2015. [View Details]

I. Koprinska and K. Yacef. People-to-People Reciprocal Recommenders. In Recommender Systems Handbook, pages 545-567. 2015. [View Details]

L. Luo, W. Liu, I. Koprinska, and F. Chen. Discovering Causal Structures from Time Series Data via Enhanced Granger Causality. In AI 2015: Advances in Artificial Intelligence - 28th Australasian Joint Conference, Canberra, ACT, Australia, November 30 - December 4, 2015, Proceedings, pages 365-378, 2015. [View Details]

L. Luo, W. Liu, I. Koprinska, and F. Chen. Discrimination-Aware Association Rule Mining for Unbiased Data Analytics. In Big Data Analytics and Knowledge Discovery - 17th International Conference, DaWaK 2015, Valencia, Spain, September 1-4, 2015, Proceedings, pages 108-120, 2015. [View Details]

T. Colombo, I. Koprinska, and M. Panella. Maximum Length Weighted Nearest Neighbor approach for electricity load forecasting. In 2015 International Joint Conference on Neural Networks, IJCNN 2015, Killarney, Ireland, July 12-17, 2015, pages 1-8, 2015. [View Details]

M. Rana, I. Koprinska, and V. G. Agelidis. Forecasting solar power generated by grid connected PV systems using ensembles of neural networks. In 2015 International Joint Conference on Neural Networks, IJCNN 2015, Killarney, Ireland, July 12-17, 2015, pages 1-8, 2015. [View Details]

I. Koprinska, M. Rana, and V. G. Agelidis. Correlation and instance based feature selection for electricity load forecasting. Knowl.-Based Syst., 82:29-40, 2015. [View Details]

View All Publications